When accounting for air resistance, heavy objects do fall faster than light ones. They couldn’t test in a vacuum back then, they only knew how things work here in Earth’s atmosphere.
A similar size chunk of iron and coal would have done the experiment just fine. Any two objects of the same shape and size but significantly different densities.
If two objects have the same size and shape, the force applied by air resistance will be the same. However, if two objects have different mass, that same force will result in different acceleration.
While that is true, two properly selected objects (such as the ones mentioned above) can reduce the effect of air resistance to levels negligible to human perception, demonstrating that heavier objects do not intrinsically fall faster.
Not at all. Our air is made up of physical objects (molecules of oxygen and nitrogen, mostly). Things with more mass, more quickly knock those out of the way.
For a demonstration you can see and more easily wrap your head around, take something just barely heavier than water, and a similarly sized heavy rock and drop them in a pool. You’ll see how much quicker the rock gets to the bottom, because it displaces the water so much faster. Our atmosphere is the exact same.
It seems maybe you’re actually misunderstanding. As I mentioned above, both you and the other commenter are certainly correct that the surrounding atmosphere (water in your case) exerts force on the objects as they fall, with varying effects depending on object density. However, if you take two objects that have vastly more density than the water (let’s say a big tungsten rod and another tungsten rod that has a hollow core), they will drop at approximately the same rate in the water even if their density vs each other varies. The greater the difference of their density versus the density of the medium, the less the effect of the medium. Is there still technically an effect? Sure, but that effect is negligible from a human perceptual perspective.
I understand what you’re saying (call it like a 10" 100 pound tungsten ball vs a 5" 50 pound tungsten ball) but your reasoning and logic of being essentially the same are just silly and the math that would dictate when each would land in atmosphere would still line up perfectly (which would be that the heaviest one will hit first). even if it were a 10,000 pound ball and a 5,000 pound ball.
The acceleration will be 1G minus drag. The Earth is sufficiently larger than anything one would drop off a tower so the weight of the dropped thing doesn’t matter at all
How does your model of the universe explain the hammer and feather dropped on the moon by Apollo 15’s David Scott landed at the same time?
Ed. There is an effect of buoyancy that will make denser things fall faster. It becomes noticeable in distances where the dropped items reach terminal velocity or on more dense media where buoyancy is more significant.
In air over short distances buoyancy is negligible, in vacuum there is none
When accounting for air resistance, heavy objects do fall faster than light ones. They couldn’t test in a vacuum back then, they only knew how things work here in Earth’s atmosphere.
A similar size chunk of iron and coal would have done the experiment just fine. Any two objects of the same shape and size but significantly different densities.
They could just drop an empty bs filled wine bottle.
Maybe fill it with mercury (but don’t drink it)
If two objects have the same size and shape, the force applied by air resistance will be the same. However, if two objects have different mass, that same force will result in different acceleration.
While that is true, two properly selected objects (such as the ones mentioned above) can reduce the effect of air resistance to levels negligible to human perception, demonstrating that heavier objects do not intrinsically fall faster.
The difference is the different buoyancy of the balls in air. That’s negligible.
Not at all. Our air is made up of physical objects (molecules of oxygen and nitrogen, mostly). Things with more mass, more quickly knock those out of the way.
For a demonstration you can see and more easily wrap your head around, take something just barely heavier than water, and a similarly sized heavy rock and drop them in a pool. You’ll see how much quicker the rock gets to the bottom, because it displaces the water so much faster. Our atmosphere is the exact same.
It seems maybe you’re actually misunderstanding. As I mentioned above, both you and the other commenter are certainly correct that the surrounding atmosphere (water in your case) exerts force on the objects as they fall, with varying effects depending on object density. However, if you take two objects that have vastly more density than the water (let’s say a big tungsten rod and another tungsten rod that has a hollow core), they will drop at approximately the same rate in the water even if their density vs each other varies. The greater the difference of their density versus the density of the medium, the less the effect of the medium. Is there still technically an effect? Sure, but that effect is negligible from a human perceptual perspective.
I understand what you’re saying (call it like a 10" 100 pound tungsten ball vs a 5" 50 pound tungsten ball) but your reasoning and logic of being essentially the same are just silly and the math that would dictate when each would land in atmosphere would still line up perfectly (which would be that the heaviest one will hit first). even if it were a 10,000 pound ball and a 5,000 pound ball.
So change the shape, a long copper rod and clump of coal.
If you do that then they definitely won’t fall the same.
The acceleration will be 1G minus drag. The Earth is sufficiently larger than anything one would drop off a tower so the weight of the dropped thing doesn’t matter at all
How does your model of the universe explain the hammer and feather dropped on the moon by Apollo 15’s David Scott landed at the same time?
Ed. There is an effect of buoyancy that will make denser things fall faster. It becomes noticeable in distances where the dropped items reach terminal velocity or on more dense media where buoyancy is more significant.
In air over short distances buoyancy is negligible, in vacuum there is none
On Earth, this is the part that makes it so that objects do not fall at the same speed.
This is the type of experiment they could not do 2000 years ago.
That is incorrect. Drag affects both equally. The difference is caused by buoyancy, less dense objects feel more buoyancy
If F is the same but m is different, what happens to a?
Nope, denser objects fall faster than less dense ones (through the air). Remember: A kilogram of feathers is just as heavy as a kilogram of lead.
I’ll still choose to be hit by the feathers.
You’ll get hit by what you’re told to get hit by and you’ll like it.